Zhengyuan Bai 1,2,3Guiju Tao 4,6Yuanxin Li 1,3Jin He 5[ ... ]Long Zhang 1,*
Author Affiliations
Abstract
1 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 School of Physics and the Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
3 University of Chinese Academy of Sciences, Beijing 100039, China
4 Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China
5 Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
6 e-mail: gjtao@siom.ac.cn
Two-dimensional (2D) periodical Au and indium tin oxide (ITO) nanocomposite arrays have been fabricated based on a self-assembled nanosphere lithography technique. A button-shaped Au nanoparticle was formed on each hollow hemisphere-shaped ITO shell. Importantly, the underlying formation mechanism during the thermal treatment has been thoroughly explored by comparing structures resulting from different deposition conditions in detail. Compared to the Au nanoparticle arrays without ITO shells, the Au/ITO nanocomposite arrays showed a stronger localized surface plasmon resonance effect and higher absorption in the near-infrared (NIR) region, benefiting from the free-electron interaction enhancement between Au and ITO. The nonlinear optical properties were investigated using a modified femtosecond intensity-scan system, and the results demonstrated Au/ITO nanocomposite arrays with a remarkable two-photon absorption saturation effect for femtosecond pulses at 1030 nm. The versatile NIR optical responses indicate the great potential of the elaborately prepared 2D periodical Au/ITO nanocomposite arrays in many applications such as solar cells, photocatalysis, and novel nano optoelectronic devices.
Nonlinear optics, materials Microstructure fabrication Nanomaterials 
Photonics Research
2017, 5(4): 04000280
作者单位
摘要
1 中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
提出并验证了一种新型超薄微波超材料吸波器设计。该超材料吸波器由三层金属结构层和两层介质材料层组合而成,并采用两个相同的金属圆环作为双层复合谐振结构单元。该设计与传统的单层谐振结构单元相比,不仅大大减小了吸波器整体结构厚度,而且有效提高了电磁波吸收率。利用有限元电磁模拟对该吸波器内部的空间电磁场及表面电流分布进行仿真与分析,阐述了其电磁吸波物理机理。模拟和实验结果均证实该吸波器具有极化不敏感及宽角度入射稳定特性。该超薄超材料电磁吸波器整体结构简单,占空比低,在电磁屏蔽光窗等领域具有潜在应用。
材料 超材料 电磁吸波器 微波 谐振 
光学学报
2017, 37(8): 0816003
白正元 1,2,*张龙 1王康鹏 1,3
作者单位
摘要
1 中国科学院上海光学精密机械研究所 中国科学院强激光材料重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
3 爱尔兰都柏林圣三一学院 物理系, 都柏林 爱尔兰
有序贵金属纳米结构由于其本身所特有的光学响应及灵活调控能力, 在微纳光电子材料与器件研究领域得到了广泛应用。在众多相关研究中, 如何实现金(Au)纳米周期结构的大面积快速制备是人们关心的重要问题之一。采用纳米球自组装刻蚀方法, 在大孔周期结构模板内部成功制备了新型二维Au纳米阵列, 并有效避免了杂散Au纳米颗粒的产生。通过进一步的工艺优化和参量控制, 实现了Au纳米颗粒尺寸的灵活调控, 并探讨了其结构形成的物理机理。光学测试研究结果揭示了二维Au纳米阵列的表面等离子体吸收与散射响应, 并证明其在近红外飞秒脉冲激励下具有显著的双光子吸收(饱和)效应。该研究结果在太阳能电池, 光开关及材料微纳制备等领域具有潜在应用。
纳米结构制备 金纳米阵列 自组装 非线性光学吸收 nanostructure fabrication Au nano array self-assembling nonlinear optical absorption 
红外与激光工程
2017, 46(5): 0534001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!